Shape optimization for low Neumann and Steklov eigenvalues

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The first biharmonic Steklov eigenvalue: positivity preserving and shape optimization

We consider the Steklov problem for the linear biharmonic equation. We survey existing results for the positivity preserving property to hold. These are connected with the first Steklov eigenvalue. We address the problem of minimizing this eigenvalue among suitable classes of domains. We prove the existence of an optimal convex domain of fixed measure. Mathematics Subject Classification (2000)....

متن کامل

On Steklov-Neumann boundary value problems

We will study a class of Steklov-Neumann boundary value problems for some quasilinear elliptic equations. We obtain result ensuring the existence of solutions when resonance and nonresonance conditions occur. The result was obtained by using variational arguments.

متن کامل

Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians

We perform a numerical optimization of the first ten nontrivial eigenvalues of the Neumann Laplacian for planar Euclidean domains. The optimization procedure is done via a gradient method, while the computation of the eigenvalues themselves is done by means of an efficient meshless numerical method allowing for the computation of the eigenvalues for large numbers of domains within a reasonable ...

متن کامل

On Principal Eigenvalues for Periodic Parabolic Steklov Problems

LetΩ be aC2+γ domain in RN ,N ≥ 2, 0 < γ < 1. LetT>0 and let L be a uniformly parabolic operator Lu= ∂u/∂t−∑i, j(∂/∂xi)(ai j(∂u/∂xj)) +∑ j b j(∂u/∂xi) + a0u, a0 ≥ 0, whose coefficients, depending on (x, t) ∈Ω×R, are T periodic in t and satisfy some regularity assumptions. Let A be the N ×N matrix whose i, j entry is ai j and let ν be the unit exterior normal to ∂Ω. Let m be a T-periodic functio...

متن کامل

Sloshing, Steklov and corners I: Asymptotics of sloshing eigenvalues

This is the first in a series of two papers aiming to establish sharp spectral asymptotics for Steklov type problems on planar domains with corners. In the present paper we focus on the two-dimensional sloshing problem, which is a mixed Steklov-Neumann boundary value problem describing small vertical oscillations of an ideal fluid in a container or in a canal with a uniform cross-section. We pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in the Applied Sciences

سال: 2009

ISSN: 0170-4214,1099-1476

DOI: 10.1002/mma.1222